The generator matrix
1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 X 1 1 1 0 1 1 2X 1 1 1 X 1 1 X 1 0 1 1 2X 1 1 1 1 1 1 1 1 1 1 0 1 1 2X 1 1 1 1 1 1 1 1 0 1 2X 1 2X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2X 1 0 1 0 1
0 1 1 2 0 1 2 1 2X+1 1 0 2 X+2 0 X+1 1 0 1 2X+1 2 X+1 1 X+2 0 1 0 2X+1 2 1 X+2 2X+1 1 2X+1 1 X 2 1 2X X 2X+2 X+1 2X+1 1 X 2 X X+1 1 X+1 2X 1 2X+1 2X 2 2X+1 2X+2 X+1 2X X 1 2X 1 2X+2 1 2X+2 1 X+2 2X+1 2X+1 2 X X+2 0 X+2 0 2 X 2 X+2 X+2 1 1 X 1 2X 1 2X+1
0 0 2X 0 0 0 0 0 0 0 2X X X X X 0 2X 0 2X X X X 0 X X 0 2X 2X X 2X 2X 2X X 2X 0 2X 2X X 2X 0 0 X 0 2X 2X 0 X 0 0 X 2X 0 X X X X 0 2X X 0 2X 0 2X 0 0 0 X X X 2X X 0 2X 2X 2X 0 X 0 0 X 2X X 0 2X 0 2X 2X
0 0 0 X 0 0 0 X 2X X 0 2X X 2X 2X X 2X X 2X 2X 2X X X 0 0 0 2X 2X 0 0 0 X 2X 0 2X 0 X 2X 0 0 2X X X 0 X 0 2X 2X 2X X 0 0 2X 0 X X X X X 2X 2X 0 X 0 X X X 2X X 0 0 2X 2X 0 2X 0 X X 0 X 0 0 X X 2X 2X 0
0 0 0 0 X 0 X X X X X 2X 0 0 X 0 X 2X 0 2X 0 X 0 X 0 0 X 0 X X 2X 0 0 X 2X 0 2X 2X 2X 2X 2X X X X X 2X X X 0 X X X 2X 0 2X 2X 0 2X X 0 2X 2X 0 0 2X 2X 2X X X X X 2X 2X 0 X 2X 2X X 0 X 0 2X 0 2X X X 2X
0 0 0 0 0 2X 2X 0 2X X 0 2X X 2X X 2X 2X 2X 0 X X 0 2X 2X 2X X X X X 2X X 2X 0 2X 0 X 0 X 2X 2X X 0 0 2X X 0 0 0 X 2X X 0 2X 0 X 2X X 2X 0 0 X 2X X 2X 2X X X 2X X 0 0 X 0 2X X X 0 X 0 2X 2X 2X X 2X 0 0 0
generates a code of length 87 over Z3[X]/(X^2) who´s minimum homogenous weight is 161.
Homogenous weight enumerator: w(x)=1x^0+132x^161+122x^162+402x^164+388x^165+516x^167+180x^168+546x^170+300x^171+636x^173+354x^174+678x^176+252x^177+714x^179+238x^180+462x^182+178x^183+198x^185+54x^186+66x^188+38x^189+12x^191+26x^192+12x^194+18x^198+18x^201+8x^207+8x^210+4x^216
The gray image is a linear code over GF(3) with n=261, k=8 and d=161.
This code was found by Heurico 1.16 in 66.3 seconds.